Infrared-triggered and motion-detecting cameras have been widely used to monitor wildlife (Yasuda and Kawakami 2002), and, more recently, videography has become common (Alexy et al. 2001, King et al. 2001, Yasuda and Kawakami 2002). Remote-triggered photography and video permit researchers to monitor wildlife occurrence (Ng et al. 2004), estimate abundance (Jacobson et al. 1997, Koerth and Kroll 2000), study activity and behavior (Alexy et al. 2001, Main and Richardson 2002), identify nest predators (Hernandez et al. 1997a,b), and monitor aquatic environments (Lopez and Silvy 1999). Although these methods are widely used, they require expensive equipment (e.g., TrailMaster [Goodson & Associates, Inc., Lenexa, Kans.] or Camtrakker [Camtrakker, Watkinsville, Ga.] cameras, film, and batteries), are limited in operation time by battery life or film and tape length, and require significant time and effort to retrieve and review results (Yasuda and Kawakami 2002). Because of the last 2 deficiencies, considerable human disturbance may be required, resulting in avoidance of camera stations by wary wildlife primarily due to increased human activity rather than the camera station itself (Sequin et al. 2003). Yasuda and Kawakami (2002) also expressed concern that none of the current methods were computer- or network-oriented and did not allow for near real-time observation and easy data retrieval and storage. Traditional camera monitoring techniques for wildlife are neither effi-
cient nor practical in remote, inaccessible environments. Therefore, we designed a web-based wildlife monitoring system that is self-sustaining in remote locations, operates in near real-time, and is web-based for easy data retrieval and storage. Our objectives were to describe a web-based, digital camera system for monitoring wildlife in remote environments. We present the results of a field evaluation of our monitoring system, evaluate the performance of the system, and discuss its advantages and disadvantages.

Study area

We conducted the field evaluation of the web-based digital camera monitoring system within the Chihuahuan Desert at Elephant Mountain Wildlife Management Area (EMWMA), located approximately 42 km south of Alpine, Texas on State Highway 118 in Brewster County. The management area was approximately 9,330 ha and ranged in elevation between 1,256–1,898 m above sea level. Elephant Mountain is of igneous origin and contains rugged, often inaccessible, mountainous terrain. Mean annual rainfall at the management area was 36.3 cm, with peak rainfall occurring between June and September. Numerous permanent water sources were distributed around the management area in natural and man-made forms such as metal storage tanks, earthen dams, slick rock and conventional guzzlers, and natural springs. Temperatures at the management area ranged from −1.7°C (average daily minimum) in January to 32.2°C (average daily maximum) in June (Brewer 2001).

Common fauna present at EMWMA included desert bighorn sheep (*Ovis canadensis*) desert mule deer (*Odocoileus hemionus crooki*), collared peccary (*Pecari tajacu*), gray fox (*Urocyon cinereoargenteus*), raccoon (*Procyon lotor*), striped skunk (*Mephitis mephitis*), ringtail (*Bassariscus astutus*), mountain lion (*Puma concolor*), coyote (*Canis latrans*), and bobcat (*Lynx rufus*; Locke 2003). Flora present at EMWMA was consistent with Chihuahuan Desert vegetation (Powell 1998).

Methods

We established our web-camera system near a permanent watering hole on Elephant Mountain WMA. The web-camera system (Figure 1) consisted of a Kodak DC260 digital zoom camera (Eastman Kodak Company, Rochester, NY), enclosed in an outdoor security case for protection against the weather (i.e., rain, sun, dust). The camera was activated via motion and heat of wildlife visiting the water hole, and “scheduled shots” were taken twice daily (1200 and 1600 hours) to ensure the system was working properly. Thumbnail pictures, initially stored in the digital camera, were downloaded to a Dell Inspiron 5150 notebook computer (1.00 GHz Pentium 3 Processor, 20 GB of memory; Dell Inc., Round Rock, Tex.) stored in a weather-proof metal container at the site. Twice a day the notebook computer turned on a GlobalStar satellite phone (GlobalStar, Milpitas, Calif.), also stored in the metal container, which downloaded the thumbnail pictures to a server in Dallas, Texas. Thumbnail pictures were stamped with a unique identification number consisting of the date and time, and reviewed for wildlife. High-resolution photos of wildlife or other interesting pictures were requested for further evaluation via the server based on the unique identification number. High-resolution pictures were then posted on the Texas Bighorn Society’s webpage (http://texasbighornsociety.org/index.htm) for public viewing.
We mounted a weather station at the camera site and recorded temperature, rainfall, barometric pressure, relative humidity, and wind speed and direction twice a day. These data were downloaded to the server in a manner similar to that used for the digital photographs. The entire camera and weather station system were self-sufficient, running on two deep-cycle 12V marine batteries. The batteries were continually recharged via a solar panel.

Results and discussion

Between February 2002 and December 2003, the web-based camera collected 486 digital photographs of west Texas wildlife (Figure 2). We documented photographs of desert bighorn sheep, desert mule deer, collared peccary, gray fox, coyote, mountain lion, roadrunner (*Geococcyx californianus*), and scaled quail (*Callipepla squamata*). The camera collected 205 “scheduled shots” which ensured the system was working properly without human intrusion. Approximately 79 photographs contained no animals or were completely black, with no photograph denoting a malfunction of some type (e.g., camera misfire, computer glitch, download malfunction). Pictures with no animals probably were caused by grass or shrub movement due to wind, indicating the high sensitivity of the system, although it was possible that animals present may not have been detected in the photograph (e.g., camouflaged, small, moved outside of frame prior to photo).

The key advantage of our system was that it allowed us to unobtrusively monitor wildlife at a remote, inaccessible site. Data from the site were collected in near real-time, and our system allowed for easy retrieval and storage of data. Yasuda and Kawakami (2002) acknowledged power supply as the biggest obstacle for field applications and suggested using a generator or high-capacity battery.

![Figure 2](http://texasbighornsociety.org/index.htm)
Our system overcame this obstacle by using 2 deep-cycle marine batteries that were continuously recharged via solar panels, making them essentially self-sufficient.

Because our system was web-based, posting the high-resolution photographs on a website allowed the public an opportunity to view elusive, secretive, and often unobservable species of wildlife in their natural habitat. The photographs have significant potential as a classroom teaching tool in urban and rural grade schools and universities. Leopold (1949) was among the first to warn of the dangers of not owning a farm and not recognizing where breakfast and heat come from. Since then there has been a growing disconnect between younger generations and “wild things.” Photographs and websites, although not a replacement for real outdoor experience, may help bridge the gap and educate students about wildlife, ecology, and principles of conservation.

A disadvantage of our system was the cost. The entire system cost approximately $12,000 (U.S.) in 2001. With advances in technology, cost of components may decline with time. Nevertheless, most rigorous research would require multiple camera systems, which would increase overall costs. However, we recommend our web-based camera system because it offers a self-sustaining technique for monitoring wildlife in remote regions that allows for easy data retrieval and storage, thus overcoming obstacles associated with other wildlife monitoring techniques.

Acknowledgments. We thank the Texas Bighorn Society for providing financial support to purchase web-camera equipment and for providing logistical support. We thank Sul Ross State University for providing support. We sincerely thank all the volunteers who contributed time and labor to help set up the camera in such a rugged and remote location. We thank T.P. Dixon for reviewing early drafts of this manuscript as well the Editorial Panel Member for his comments.

Literature cited
POLLAY, A. M. 1998. Trees and shrubs of the Trans-Pecos and adjacent areas. University of Texas Press, Austin, USA.

Address for Shawn L. Locke: Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843-2258, USA; e-mail for Locke: sloc@neo.tamu.edu. Address for David L. Wetzel: Texas Bighorn Society, 4920 Canton Drive, Fort Worth, TX 76180, USA. Address for Michael T. Pittman: Texas Parks and Wildlife Department, 109 S. Cockrell, Alpine, TX 79830, USA. Address for Clay E. Brewer: Texas Parks and Wildlife Department, P.O. Box 2083, Fort Davis TX 79734, USA. Address for Louis A. Harveson: Department of Natural Resource Management, Sul Ross State University, Box C-16, Alpine, TX 79830, USA.

Shawn L. Locke (photo) is currently a Ph.D. candidate at Texas A&M University. Shawn received a B.S. in forestry from Stephen F. Austin State University and an M.S. in range and wildlife management from Sul Ross State University. Shawn is interested in researching large mammals and upland gamebirds in addition to incorporating new technologies into wildlife research. Shawn has been a member of The Wildlife Society (state and national level) since 2000. Marie D. Cline is an undergraduate student in the Department of Wildlife and Fisheries Sciences at Texas A&M University. David L. Wetzel lives in Irving, Texas, and is the owner of a small electronics manufacturing firm that produces printed circuit boards. David has a passion for all things “outdoors” and has been hunting.
since he was a child. He has been involved with several conservation groups most of his adult life, and currently serves on the Board of Directors of the Texas Bighorn Society as Vice-President. David is currently working on a design for an upgraded version of the camera described in this article. Michael T. (Mike) Pittman first came to the Texas Parks and Wildlife Department (TPWD) as a summer student for the Wildlife Division during the summer of 1972 on the Chaparral WMA. In 1973 he was employed again as a summer student on the Kerr WMA. He received his B.S. in wildlife science from Texas A&M University in 1977. He was permanently employed by the TPWD in 1978 as a wildlife technician in the Edwards Plateau Regulatory District. In 1980 he moved to Fort Davis as a wildlife biologist in the Trans-Pecos Regulatory District. Mike became Area Manager of the Black Gap WMA and the Ocotillo Unit of the Las Palomas WMAs in 1995. In March 2002 he became project leader of the Trans-Pecos Ecosystem Management Project including the Black Gap, Elephant Mountain, Ocotillo Unit and the Sierra Diablo WMAs.

Clay E. Brewer is a wildlife biologist and currently serves as the Bighorn Sheep, Mule Deer, and Pronghorn Program Leader for Texas Parks and Wildlife Department. Clay received his B.S. from Oklahoma State University and his M.S. from Sul Ross State University. Clay has been extensively involved with desert bighorn sheep restoration efforts in Texas and other Chihuahuan Desert research and management activities since 1995. Louis A. Harvey has been researching large mammals, predators, and upland game birds in the Chihuahuan Desert >7 years. Louis received his B.S. from Texas Tech University, his M.S. from Texas A&M University-Kingsville, and his Ph.D. from the Joint Ph. D. program at Texas A&M University-Kingsville and Texas A&M University. Louis is currently an associate professor of wildlife management and Chair of the Department of Natural Resource Management at Sul Ross State University (SRSU). Louis is an active member of The Wildlife Society (state, section, and national levels) and is the academic advisor of the Society’s SRSU Student Chapter.